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Abstract

For almost 15 years, the NLM Medical
Text Indexer (MTI) system has been pro-
viding assistance to NLM Indexers, Cat-
alogers, and the History of Medicine Di-
vision (HMD) in the task of indexing the
ever increasing number of MEDLINE ci-
tations, with MTI’s role continuously ex-
panding by providing more extensive and
specialized coverage of the MEDLINE
collection. The BioASQ Challenge has
been a tremendous benefit by expanding
the knowledge of leading-edge indexing
research. In this paper we present an in-
dexing approach based on the Learning
to Rank methodology which was success-
fully applied to the indexing task by sev-
eral participants of recent Challenges. The
proposed solution is designed to enhance
the results that come from MTI by com-
bining strengths of MTI with additional
sources of evidence to produce a more ac-
curate list of top MeSH Heading candi-
dates for a MEDLINE citation being in-
dexed. It incorporates novel Learning to
Rank features and other enhancements to
produce performance superior to that of
MTI, both overall and for two specific
classes of MeSH Headings for which MTI
has shown poor performance.

1 Introduction

The Indexing Section of the US National Library
of Medicine R© (NLM R©) is tasked with processing
the ever increasing number of MEDLINE R©1 cita-
tions (currently numbering more than 800,000 ar-
ticles per year from more than 5,600 journals in
almost 40 languages) using a vocabulary of over

1https://www.nlm.nih.gov/pubs/factsheets/medline.html

27,000 MeSH R© Descriptors and 220,000 MeSH
Supplementary Concept Records2. To support
this effort, various automatic and semi-automatic
indexing solutions have been proposed over the
years, including the NLM Medical Text Indexer
(MTI) system (Mork et al., 2013).

Given any biomedical text, MTI produces a
ranked list of controlled vocabulary terms (MeSH)
that summarizes the main points of the text us-
ing MeSH Main Headings (MH), Subheadings
(SH), Check Tags (CT), and Supplementary Con-
cept Records (SCRs). It can also recommend
a limited number of Publication Types3 (Yepes
et al., 2013a). MTI fuses heading recommenda-
tions from three separate sources: MetaMap in-
dexing (Aronson and Lang, 2010), PubMed R© Re-
lated Citations (Lin and Wilbur, 2007) and Ma-
chine Learning (Yepes et al., 2013b), with the lat-
ter source used to improve performance on some
of the most frequent CheckTags. The results of
this fusion are post-processed using various rules
based on the end-user requirements, to provide a
customized summary of the text. In this paper we
focus solely on MH and CT indexing.

MTI has been made available to the research
community worldwide4 providing both a baseline
for performance evaluations and input data for
several other indexing systems. This includes re-
sults MTI produces for each of the weekly datasets
during the BioASQ Challenges (Tsatsaronis et al.,
2015).

Since 2013, the MTI team has been participat-
ing in the BioASQ Challenge which has proven
to be an excellent forum for exchange and evalu-
ation of ideas for biomedical indexing and which
inspired several recent improvements in the MTI
system (Mork et al., 2014). In this paper we

2https://www.nlm.nih.gov/mesh/meshhome.html
3https://www.nlm.nih.gov/mesh/pubtypes.html
4https://ii.nlm.nih.gov/MTI/index.shtml



present a component that is designed to enhance
results produced by MTI. This component is based
on the Learning to Rank methodology that was
successfully used by several participants of recent
Challenges (Liu et al., 2014a; Liu et al., 2015) .
While learning from that work, we have also ex-
perimented with several new features specifically
engineered to harness the power of MTI, as well
as to incorporate other heterogeneous sources of
evidence. We applied L2R to the results generated
by MTI for the test batches of the 2016 BioASQ
Challenge and other test collections comprised of
recent MEDLINE citations. L2R outperformed
MTI on these collections, both overall and for two
specific classes of MeSH Headings for which MTI
has performed poorly.

2 Learning to Rank

The task of MEDLINE indexing can be formu-
lated as a ranking problem: given a new PubMed
citation, can we find those MeSH headings that are
the most relevant to this citation? In this formula-
tion, the indexing task becomes similar to the doc-
ument retrieval task, in which the documents in a
collection are evaluated for relevance, significance
or importance to an incoming query. In document
retrieval, the documents are usually long and the
queries are short, whereas in this application of
ranking, the roles are in a way reversed: the ci-
tation is the query while the MeSH headings are
the documents (Ruch, 2006).

In recent years, the Learning to Rank method-
ology (Liu, 2009) has been successfully applied
to biomedical indexing. Learning to Rank (L2R)
uses supervised machine learning to build a model
that calculates a numerical score for any citation-
heading pair. Thus, given a target citation and a
set of candidate headings, L2R scores can be used
to rank these candidates. The top N ranked candi-
dates from the set are then selected as the relevant
headings. The value of N is usually calculated for
each citation individually.

During the training stage of L2R, a set of cita-
tions previously indexed by humans is processed
to build the ranking model. For each training ci-
tation, a set of candidate headings is generated.
While in principle the whole MeSH (more than
27,000 headings) may be used as candidates, in
practice, only a relatively small subset of headings
deemed more likely to be relevant is considered.

For each citation and each candidate heading,

a feature vector is calculated. Each feature usu-
ally depends on both the citation and the heading
and measures similarity between the two in some
space. The features can be derived both from the
raw data (such as n-grams appearing in the title
and abstract of the citation and entry terms of the
heading) and from metadata (such as statistics of
occurrence of the heading in the journal where the
citation is published). To each feature vector, a bi-
nary relevance flag is then assigned that equals 1
if the corresponding candidate MeSH heading has
been assigned to the citation by a human indexer,
and 0 otherwise. Assuming the same number MT

of candidates for each of the T training citations,
this yields MT ∗T feature vectors with correspond-
ing relevance flags. This training dataset is then
used to build a ranking model.

Processing of a new target citation also consists
of several steps. As during training, a set of candi-
date headings is first collected and then the corre-
sponding set of feature vectors is generated. These
vectors are ranked by the trained model and then
truncated to produce the final set of recommended
headings.

3 Learning-To-Rank as an MTI Booster

MTI is a mature indexing tool that provides high-
accuracy recommendations for some classes of
MeSH headings, such as CheckTags (Yepes et al.,
2013b), while performing worse on other classes,
such as “as Topic” headings5. It is a sophisti-
cated multi-stage processing system that generates
as output its own ranked list of candidate head-
ings. As additional evidence, it can also produce
a list of rejected candidates that, while being ulti-
mately labeled by MTI as irrelevant based on var-
ious heuristics, have at least some relevance to the
target citation. The headings at the very top of
MTI ranked list for a citation are almost always
correct. For example, in 2015, the percentage of
correct recommendations for the highest ranked
CheckTag candidates and the top five other recom-
mendations were, respectively, 81.21%, 84.97%,
73.78%, 65.10%, 57.57%, and 51.15%, with the
performance trailing off further down the list.
Therefore, we choose to employ the L2R method-
ology to develop a complete indexing solution that
uses MTI results as input. We use various types of

5For each “As Topic” MeSH heading, there is a corre-
sponding Publication Type. These are designed to capture
differences between what a citation is (Publication Type) ver-
sus what it is about (“as Topic” MeSH heading).



information provided by MTI to both generate the
candidate heading list for a given citation and to
compute some of the L2R features for these candi-
dates. We also expand the candidate list with head-
ings obtained from other sources, such as PubMed
Related Citations (Lin and Wilbur, 2007) now
known as Similar Articles, and use other types of
evidence independent of MTI and PRC to generate
additional features. The result is a software com-
ponent that takes as input detailed MTI results for
a given target citation, together with the external
evidence, to produce a new list of indexing recom-
mendations that, on average, has higher precision
and recall than MTI.

Given a set of citations, each citation is pro-
cessed as follows:

1. MTI is applied to the citation to produce
an expanded ranked set of candidates that
includes both accepted and rejected MeSH
headings. For each candidate heading, we
record its MTI score, whether it is a Check-
Tag and whether it is accepted or rejected.

2. A set of PubMed Related Citations is col-
lected, together with their normalized sim-
ilarity scores and their MeSH headings as-
signed by human indexers.

3. The final MeSH heading candidate set is gen-
erated as the union of MTI- and PRC-derived
candidates.

4. For each candidate heading in the final set, a
feature vector is calculated (see Section 4 for
details).

5. In the L2R training mode, feature vectors for
all citations are collected into a single train-
ing set that is used to train a model. Training
is performed offline and no incremental train-
ing or tuning of the model is done afterwards.

6. In the L2R ranking mode:

(a) The trained model computes a rank-
ing score for each feature vector cor-
responding to a heading from the final
candidate set.

(b) Top candidates from the ranked list are
selected as the final result (see Section 5
for more details on different ways of cal-
culating the number of top candidates).

4 Features

4.1 PubMed Related Citations Based
Features

We implemented two neighborhood features orig-
inally proposed in (Huang et al., 2011) that we de-
note by PRCfreq and PRCsim. They are derived
from PubMed Related Citations of the citation be-
ing processed, their MeSH Headings and normal-
ized similarity scores. For each candidate heading,
PRCfreq is the number of PubMed Related Cita-
tions that contain this heading, and PRCsim is the
sum of the similarity scores of those neighbors.

4.2 Text Based Features

We implemented several features that also origi-
nated from (Huang et al., 2011) and that are based
on statistics collected from unigrams and bigrams
extracted from the MeSH heading and its entry
terms (i.e., a synonymy set of the heading) as well
as the title and abstract of a citation:

• Overlap: The fraction of MeSH term uni-
grams and bigrams that appear in the title or
abstract of the citation.

• Syn: A binary feature that captures presence
of entry terms in the title and abstract.

• IBM: Probabilities of translating the title
and abstract into a candidate MeSH heading,
based on a parallel corpus of heading-title
and heading-abstract pairs collected from a
set of previously indexed citations and IBM
statistical translation model 1 (Brown et al.,
1993).

• Okapi: Treating the heading as the query and
the title or abstract of a citation as the docu-
ment, we computed similarities between the
heading and the title and abstract using Okapi
BM25 model (Robertson et al., 1995). Fol-
lowing (Mao and Lu, 2013), we used a corpus
of 58,088 MEDLINE documents to construct
the parallel training corpus for both Okapi
and IBM features.

These features can be considered extensions of
more traditional TF/IDF-based features used for
ranking because TF/IDF and similar information
is used for their computation. We refer the reader
to (Huang et al., 2011) for further details.



4.3 Vocabulary Density Based Feature

Adding journal-specific information was shown to
boost precision of MTI without losses in recall
(Mork et al., 2014). We therefore included Vo-
cabulary Density (VocD) as a feature in learning
to rank using data provided by NLM‘s Indexing
Initiative6. It is equivalent to the MeSH frequency
feature described in (Liu et al., 2015).

4.4 MTI Based Features

A feature that we denote as InMTI is set to 1 if
the candidate heading was recommended by MTI,
regardless of whether or not it was included in hu-
man indexing, -1 if it was rejected by MTI and
0 otherwise. MTIScore is the score assigned by
MTI to the corresponding candidate and divided
by the score of the top MTI candidate. For PRC-
derived candidates that were not recommended by
MTI, this feature is set to 0. MHtype is a binary
feature that indicates whether or not the candidate
heading is a CheckTag.

4.5 Journal Descriptor Indexing Based
Features

We implemented additional features based on
the Journal Descriptor Indexing (JDI) methodol-
ogy (Humphrey et al., 2006) maintained by the
NLMs Lexical Systems Group7. Given a block
of text, the JDI-based Text Categorization (TC)
tool produces a ranked list of about 120 high-
level journal descriptors (e.g. “Anatomy”, “Chem-
istry”, “Biomedical Engineering” etc) according
to their relevance to the text. For example, the
TC tool applied to the text “heart valve” pro-
duces ranking scores of 0.156, 0.098 and 0.090 for
top three descriptors “Cardiology”, “Pulmonary
Medicine”, and “Vascular Diseases”, respectively.
Similarly, JDI provides precomputed rankings of
each MeSH heading against the same journal de-
scriptors set. For example, the MeSH heading
“Lung Neoplasms’ has a score of 0.167 for its top
descriptor “Pulmonary Medicine”, 0.138 for the
second closest descriptor “Neoplasms” but only
0.0187 for the descriptor “Cardiology”. Given
a citation text (title or abstract) and a candidate
heading, we apply the TC tool to the text to find
the top ranking journal descriptor, and then multi-
ply the corresponding score by the score of the top
descriptor for the heading. The more relevant the

6https://ii.nlm.nih.gov/DataSets/index.shtml
7https://lsg2.nlm.nih.gov/LexSysGroup/Home/index.html

heading is to the citation text, the higher we expect
the resulting product to be. We denote this feature
as JDI.

We also implemented a simplified JDI-based
feature denoted by JDInoTC that does not require
invoking the TC tool for each heading-citation
pair. Instead, it uses the journal descriptor pre-
assigned to the journal where the citation is pub-
lished. This assignment is designed to capture
the overall topic of the journal. For example, the
journal “Clinical Obesity” has been assigned the
Broad Subject Term (descriptor) “Metabolism”8.
We then set JDInoTC to the score of the candidate
heading for that journal descriptor. Although the
JDI and JDInoTC features are correlated, experi-
ments presented in Section 5.3 show an advantage
of using these features together over using just one
or the other.

4.6 MeSH Similarity Based Features

We implemented a set of features inspired by
the adaptation of a method called User-oriented
Semantic Indexer (USI) to biomedical index-
ing (Fiorini et al., 2015) that uses similarity scores
computed between pairs of candidate headings
based on their positions in the MeSH tree, to select
an optimal set of headings for a citation, without
directly depending on the text of the citation. For
a given candidate heading, we compute the max-
imum, minimum, and average MeSH-based dis-
tances from that heading to the non-rejected head-
ings of the MTI candidate set. The intuition be-
hind this approach is that recommending head-
ings that are very similar to each other may be
redundant while, at the other end of the distance
spectrum, candidate headings that are very differ-
ent from those recommended by MTI might rep-
resent spurious outliers from citations with low
PRC similarity scores. The features were imple-
mented using the SML Java library (Harispe et
al., 2014). We experimented with several ways of
computing pairwise heading similarity and found
the combination of Jiang and Conrath semantic
distance (Jiang and Conrath, 1997) with the Seco
information content measure (Seco et al., 2004) to
provide the best results. We denote these features
as SML.

8http://www.ncbi.nlm.nih.gov/nlmcatalog/101560587



5 Experiments

We experimented with several variations of the
L2R module that differed in their feature sets, their
ranking algorithms, the number of PubMed Re-
lated Citations for each target citation, as well
as the type of cut-off used to select the final list
of recommended MeSH headings. We used the
RankLib library implementation of the Learning
to Rank core9.

5.1 BioASQ 2016

To train the L2R component, as well as for lo-
cal testing, we have used a dataset of 139,072
citations. This collection is comprised of ran-
domly completed citations from the beginning of
the 2015 NLM indexing year (mid-November of
2014) until early February of 2015. Since the L2R
system was being actively developed at the time
of the BioASQ Challenge runs, the L2R version
that was evaluated had a limited number of fea-
tures, namely, PRCfreq, PRCsim, Overlap, Syn,
IBM, Okapi, VocD, and InMTI resulting in a fea-
ture vector of length 12. We note that in this ver-
sion, unlike the one described in Section 5.3, we
did not include rejected MTI candidates at either
the training or the ranking stage, which also im-
plies that the InMTI feature was binary. We col-
lected 40 PubMed Related Citations for each pro-
cessed citation in both training and ranking modes.
When ranking a citation, we set the number of top
ranked citations reported as the final result equal
to the number of headings recommended by MTI.
Finally, we used MART (Friedman, 2001) as the
ranking algorithm. We denote this version of the
L2R module applied to results of MTI as MTI with
L2R. We also denote the default MTI system that
does not use L2R as MTI. In Table 1 we report per-
formance of MTI with L2R on two BioASQ test
batches, as of May 3, 2016. Throughout this pa-
per, we use micro-precision, recall and F1 metrics
to measure performance.

5.2 Significant Improvements over MTI

We have observed that MTI with L2R performs sig-
nificantly better than MTI on two specific classes
of MeSH headings: Historical Check Tags and
“As Topic” headings. Table 2 shows performance
of MTI with L2R on Historical CheckTags using
2016 MTI test collection. Due to low accuracy,

9https://sourceforge.net/p/lemur/wiki/RankLib

Batch/week Precision Recall F1

Batch 1, Wk 2 62.48% 58.81% 60.59%
Batch 1, Wk 3 59.09% 57.70% 58.39%
Batch 1, Wk 4 60.55% 54.23% 57.21%
Batch 1, Wk 5 58.29% 55.71% 56.97%
Batch 2, Wk 1 60.05% 63.26% 61.61%
Batch 2, Wk 1 52.74% 56.61% 54.60%
Batch 2, Wk 3 59.12% 55.82% 57.42%

Table 1: Performance of MTI with L2R on
BioASQ 2016 Test batches 1 and 2.

MTI currently does not recommend any Histor-
ical CheckTags except for “History, 20th Cen-
tury” for which MTI’s precision, recall and F1

are, respectively, 100%, 0.79%, and 1.56%. Ta-
ble 3 shows performance of MTI with L2R for
“As Topic” headings with F1 values of at least
50%. For 39 “As Topic” headings MTI with L2R
achieved precision of more than 50%, with 16 of
those reaching perfect precision. These headings
attempt to describe what an article is about (e.g.
“Dissertations, Academic as Topic”) whereas Pub-
lication Types attempt to capture what a citation
is (e.g. “Academic Dissertations”). These differ-
ences are often subtle which leads to frequent MTI
errors when identifying “as Topic” headings. As
a result, MTI currently only recommends “Ran-
domized Controlled Trials as Topic”, “Patents as
Topic”, and “Advertising as Topic” based on a
small set of trigger keywords. This yields over-
all precision, recall and F1 of, respectively, 92%,
2.55% and 4.96%, which should be compared to
the corresponding values from the last row of Ta-
ble 3. These results demonstrate that L2R pro-
vides a significant performance boost for these two
classes of MeSH headings.

Historical MH Precision Recall F1

15th Century 53.85% 28.00% 36.84%
16th Century 85.42% 73.21% 78.85%
17th Century 82.61% 51.35% 63.33%
18th Century 74.32% 55.00% 63.22%
19th Century 80.23% 64.13% 71.28%
20th Century 89.57% 70.37% 78.82%
21st Century 95.81% 26.32% 41.29%
Ancient 78.31% 51.59% 62.20%
Medieval 90.48% 66.67% 76.77%

All Historical 86.49% 54.81% 67.10%

Table 2: Performance of MTI with L2R on Histor-
ical CheckTags.



“As Topic” MH Precision Recall F1

D,A 100.00% 100.00% 100.00%
Cookbooks 100.00% 71.43% 83.33%
Periodicals 83.52% 63.19% 71.95%
Patents 88.89% 57.97% 70.18%
A&I 55.56% 71.43% 62.50%
W&H 83.33% 50.00% 62.50%
Formularies 66.67% 50.00% 57.14%
Poetry 85.71% 40.00% 54.55%
RS 65.38% 45.95% 53.97%
Dictionaries 100.00% 33.33% 50.00%
Manuscripts 100.00% 33.33% 50.00%
Webcasts 100.00% 33.33% 50.00%
Advertising 68.18% 39.47% 50.00%

All “as Topic” 69.56% 24.58% 36.33%

Table 3: Performance of MTI with L2R on indi-
vidual “As Topic” headings with F1 values of at
least 50% (“D,A”, “A&I”, “W&H”, and “RS”
denote, respectively, “Dissertations, Academic as
Topic” , “Abstracting and Indexing as Topic”,
“Wit and Humor as Topic”, and “Research Sup-
port as Topic”), as well as collectively for all 83
“As Topic” headings.

5.3 Further L2R development

Overall, adding more features as well as using a
larger number of PubMed Related Citations has
a positive effect on the L2R performance. We
trained L2R on the feature set from MTI with L2R
extended with the MHType and MTIScore fea-
tures and 80 PubMed Related Citations. We then
experimented with other L2R configurations with
additional features, and switched from MART
to the LambdaMART (Wu et al., 2010) ranking
method. We also compared two different ways of
determining, the number of top recommendations.
One approach was to preserve the number of can-
didates recommended by MTI (nMTI), as we did
with MTI with L2R. We also observed that Lamb-
daMART often produced positive ranking scores
for the most relevant candidate headings, and neg-
ative values for irrelevant ones. Therefore the
other trimming approach PosNeg, was to only re-
tain the candidates with positive LambdaMART
ranking scores. In some cases that produced a
very long list of candidates in which case we set
the threshold at 3 times the number of MTI candi-
dates.

Table 4 shows performance of the standalone
L2R module on the the 2015 MTI test collection,

compared to that of MTI. It shows that PosNeg
trimming provides a significant advantage in pre-
cision over nMTI with a relatively smaller drop in
recall. Therefore it would be the recommended
choice especially if precision is more important
than recall, which is often the case during produc-
tion use of the MTI system.

6 Conclusions and Future Directions

The integration of the Learning to Rank method-
ology as a boosting component of the MTI system
improved its overall performance and showed sig-
nificant gains in both precision and recall for some
specific classes of MeSH headings. As is often
the case in supervised machine learning, our ex-
periments show that using a richer set of features
specifically engineered to capture various types of
evidence of relevance of MeSH headings to cita-
tions yields better candidate rankings. One future
step in this direction would be to explore features
based on author information. For example, analo-
gous to PRC-based similarity of citations, we can
explore author-based similarity. We performed
limited experiments with author-derived statistics
that produced some promising results. We also
found that accurate author disambiguation (Liu
et al., 2014b) is a prerequisite for robustness of
author-based features. Other potential sources of
evidence that can be used in Learning to Rank are
both general and journal-specific MeSH heading
coocurrence patterns10 as well as dense distributed
representations of citation text (Le and Mikolov,
2014). And to go beyond Learning to Rank, we
plan to explore the application of Deep Learning
to biomedical indexing and, more generally, multi-
label classification (Read and Perez-Cruz, 2014).
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